Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Pharmacol Res ; 194: 106823, 2023 08.
Article En | MEDLINE | ID: mdl-37336430

Evidence that Huntington's disease (HD) is characterized by impaired cholesterol biosynthesis in the brain has led to strategies to increase its level in the brain of the rapidly progressing R6/2 mouse model, with a positive therapeutic outcome. Here we tested the long-term efficacy of chronic administration of cholesterol to the brain of the slowly progressing zQ175DN knock-in HD mice in preventing ("early treatment") or reversing ("late treatment") HD symptoms. To do this we used the most advanced formulation of cholesterol loaded brain-permeable nanoparticles (NPs), termed hybrid-g7-NPs-chol, which were injected intraperitoneally. We show that one cycle of treatment with hybrid-g7-NPs-chol, administered in the presymptomatic ("early treatment") or symptomatic ("late treatment") stages is sufficient to normalize cognitive defects up to 5 months, as well as to improve other behavioral and neuropathological parameters. A multiple cycle treatment combining both early and late treatments ("2 cycle treatment") lasting 6 months generates therapeutic effects for more than 11 months, without severe adverse reactions. Sustained cholesterol delivery to the brain of zQ175DN mice also reduces mutant Huntingtin aggregates in both the striatum and cortex and completely normalizes synaptic communication in the striatal medium spiny neurons compared to saline-treated HD mice. Furthermore, through a meta-analysis of published and current data, we demonstrated the power of hybrid-g7-NPs-chol and other strategies able to increase brain cholesterol biosynthesis, to reverse cognitive decline and counteract the formation of mutant Huntingtin aggregates. These results demonstrate that cholesterol delivery via brain-permeable NPs is a therapeutic option to sustainably reverse HD-related behavioral decline and neuropathological signs over time, highlighting the therapeutic potential of cholesterol-based strategies in HD patients. DATA AVAILABILITY: This study does not include data deposited in public repositories. Data are available on request to the corresponding authors.


Huntington Disease , Mice , Animals , Huntington Disease/drug therapy , Huntington Disease/pathology , Brain/pathology , Cholesterol , Corpus Striatum/pathology , Cognition , Disease Models, Animal , Mice, Transgenic
2.
Mol Psychiatry ; 27(12): 5227-5234, 2022 12.
Article En | MEDLINE | ID: mdl-36028569

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects millions of people worldwide. AD pathogenesis is intricate. It primarily involves two main molecular players-amyloid-ß (Aß) and tau-which actually have an intrinsic trend to generate molecular assemblies that are toxic to neurons. Incomplete knowledge of the molecular mechanisms inducing the onset and sustaining the progression of the disease, as well as the lack of valid models to fully recapitulate the pathogenesis of human disease, have until now hampered the development of a successful therapy for AD. The overall experience with clinical trials with a number of potential drugs-including the recent outcomes of studies with monoclonal antibodies against Aß-seems to indicate that Aß-targeting is not effective if it is not accompanied by an efficient challenge of Aß neurotoxic properties. We took advantage from the discovery of a naturally-occurring variant of Aß (AßA2V) that has anti-amyloidogenic properties, and designed a novel bio-inspired strategy for AD based on the intranasal delivery of a six-mer peptide (Aß1-6A2V) retaining the anti-amyloidogenic abilities of the full-length AßA2V variant. This approach turned out to be effective in preventing the aggregation of wild type Aß and averting the synaptic damage associated with amyloidogenesis in a mouse model of AD. The results of our preclinical studies inspired by a protective model already existing in nature, that is the human heterozygous AßA2V carriers which seem to be protected from AD, open the way to an unprecedented and promising approach for the prevention of the disease in humans.


Alzheimer Disease , Amyloid , Animals , Mice , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid/antagonists & inhibitors , Amyloid beta-Peptides/therapeutic use , Disease Models, Animal
3.
J Control Release ; 330: 587-598, 2021 02 10.
Article En | MEDLINE | ID: mdl-33412229

Supplementing brain cholesterol is emerging as a potential treatment for Huntington's disease (HD), a genetic neurodegenerative disorder characterized, among other abnormalities, by inefficient brain cholesterol biosynthesis. However, delivering cholesterol to the brain is challenging due to the blood-brain barrier (BBB), which prevents it from reaching the striatum, especially, with therapeutically relevant doses. Here we describe the distribution, kinetics, release, and safety of novel hybrid polymeric nanoparticles made of PLGA and cholesterol which were modified with an heptapeptide (g7) for BBB transit (hybrid-g7-NPs-chol). We show that these NPs rapidly reach the brain and target neural cells. Moreover, deuterium-labeled cholesterol from hybrid-g7-NPs-chol is released in a controlled manner within the brain and accumulates over time, while being rapidly removed from peripheral tissues and plasma. We confirm that systemic and repeated injections of the new hybrid-g7-NPs-chol enhanced endogenous cholesterol biosynthesis, prevented cognitive decline, and ameliorated motor defects in HD animals, without any inflammatory reaction. In summary, this study provides insights about the benefits and safety of cholesterol delivery through advanced brain-permeable nanoparticles for HD treatment.


Huntington Disease , Nanoparticles , Animals , Brain , Cholesterol , Huntington Disease/drug therapy , Kinetics
4.
ACS Chem Neurosci ; 11(3): 367-372, 2020 02 05.
Article En | MEDLINE | ID: mdl-31860272

The current pharmacological treatment of Huntington's disease (HD) is palliative, and therapies to restore functions in patients are needed. One of the pathways affected in HD involves brain cholesterol (Chol) synthesis, which is essential for optimal synaptic transmission. Recently, it was reported that in a HD mouse model, the delivery of exogenous Chol to the brain with brain-permeable nanoparticles protected animals from cognitive decline and rescued synaptic communication, indicating Chol as a therapeutic candidate. We examined whether nose-to-brain delivery, already used in human therapy, could be an alternative, noninvasive strategy to deliver Chol to the adult brain and, in the future, replenish Chol in the HD brain. We gave wild-type (WT) mice a single intranasal (IN) dose of liposomes loaded with deuterium-labeled cholesterol (Chol-D6, to distinguish and quantify the exogenous cholesterol from the native one) (200 µg Chol-D6/dose). After different intervals, Chol-D6 levels, determined by LC-MS in plasma, striatum, cortex, and cerebellum, reached a steady-state concentration of 0.400 ng/mg between 24 and 72 h. A subsequent acute study confirmed the kinetic profiles of Chol-D6 in all tissues, indicating correspondence between the dose (two doses of 200 µg Chol-D6/dose) and the calculated brain area concentration (0.660 ng/mg). Finally, in WT mice given repeated IN doses, the average Chol-D6 level after 24 h was about 1.5 ng/mg in all brain areas. Our data indicate the effectiveness of IN Chol-loaded liposomes to deliver Chol in different brain regions, opening the way to future investigations in HD mice.


Brain/metabolism , Cholesterol/metabolism , Huntington Disease/metabolism , Liposomes/metabolism , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Mice , Neurons/metabolism
...